On the Resolution Limit of Femtosecond Stimulated Raman Spectroscopy: Modelling Fifth-Order Signals with Overlapping Pulses.
نویسندگان
چکیده
Femtosecond stimulated Raman scattering (FSRS) spectroscopy is a powerful pump-probe technique that can track electronic and vibrational dynamics with high spectral and temporal resolution. The investigation of extremely short-lived species, however, implies deciphering complex signals and is ultimately hampered by unwanted nonlinear effects once the time resolution limit is approached and the pulses overlap temporally. Using the loop diagrams formalism we calculate the fifth-order response of a model system and address the limiting case where the relevant dynamics timescale is comparable to the pump-pulse duration and, consequently, the pump and the probe overlap temporally. We find that in this regime, additional diagrams that do not contribute for temporally well separated pulses need to be taken into account, giving rise to new time-dependent features, even in the absence of photoinduced dynamics and for negative delays.
منابع مشابه
Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330-750 nm.
Spectral compression of femtosecond pulses by second harmonic generation in the presence of substantial group velocity dispersion provides a convenient source of narrowband Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS). We discuss here a simple and efficient modification that dramatically increases the versatility of the second harmonic spectral compression technique. A...
متن کاملManipulating stimulated coherent anti-Stokes Raman spectroscopy signals by broad-band and narrow-band pulses.
A transition-amplitude based representation of heterodyne detected coherent anti-Stokes Raman signals is used to separate them into a parametric component that involves no change in the material and dissipative processes associated with various transitions between states. Qualitatively different contributions from the two processes are predicted for the signal generated by an overlapping narrow...
متن کاملSurface-Enhanced Femtosecond Stimulated Raman Spectroscopy at 1 MHz Repetition Rates.
Surface-enhanced femtosecond stimulated Raman spectroscopy (SE-FSRS) is an ultrafast Raman technique that combines the sensitivity of surface-enhanced Raman scattering with the temporal resolution of femtosecond stimulated Raman spectroscopy (FSRS). Here, we present the first successful implementation of SE-FSRS using a 1 MHz amplified femtosecond laser system. We compare SE-FSRS and FSRS spect...
متن کاملTime-gated pre-resonant femtosecond stimulated Raman spectroscopy of diethylthiatricarbocyanine iodide.
We present time-gated femtosecond stimulated Raman spectroscopy (fSRS) under the pre-resonance Raman conditions of diethylthiatricarbocyanine (DTTC) iodide. A 'pseudo emission-free' condition is achieved by delivering the probe beam ahead of the pump beam. Regeneratively amplified pulse trains are employed to create an angle-geometry (non-collimated) mixing between the pump and probe beams, lea...
متن کاملSingle-fiber-laser-based wavelength tunable excitation for coherent Raman spectroscopy
We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting in a nonlinear optical fiber. Spectra of C─H stretches of cyclohexane were measured simultaneously by stimulated Raman gain (SRG) and coherent anti-Stokes Ram...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemphyschem : a European journal of chemical physics and physical chemistry
دوره 16 16 شماره
صفحات -
تاریخ انتشار 2015